DATEX Il v2.2
D2

Document version: 2.2

31 May 2013

European Commission
Directorate General for Transport and Energy

Copyright © 2013

1.1 Document Control:

Prepared by :

Date Comment Version
DATEX Technical 01/12 2011 1.0
Group
DATEX Technical 14/05 2012 2.1
Group
DATEX Technical 31/05/2013 2.2
Group
Reviewed by :
Date Comment Version
DATEX Technical 14/05 2012 2.1
Group
DATEX Technical 31/05/2013 2.2
Group
Approved by :
Date Comment Version
DATEX Technical 31/05 2012 21
Group
DATEX Technical 31/05/2013 2.2

Group

TABLE OF CONTENTS

O o | 4 e Yo 10 '] A oY 5
Li1 OOV .. s 5
1.2 DOCUMENT SITUCTUIE «.utitniitiitie ettt et e et et e et e et e s e et e et e s e ea e et e s een et e s eeas et esnaeneenaesnaenns 5
1.3 DATEX Il referenCe QOCUMEBNESuiiiiiii et e e e e e e e e et e et e s e e eaneeeaneees 5

2 DATEX I eXtenSion QUIAEINEuuiiiiiiii s 8
2.1 GENEral EXIENSION TUIBSvu ittt et e e e e e e e e e e e e et e e et e et e e et e eaneeeans 8

3 Datexll Level B EXTENSION TUIES ...t e e e e et et eeanaas 9
3.1 LEVEI B BXIENSION TUIESeveiiiiiii ettt e e e et e e e e e e e e e e e et e et eean e eans 9
3.2 UML EXIENSION TUIBS ... vttt e e e e e e et e e e e e e et e e e et e e et e et e e ebeeanaeeans 9
3.3 XSD EXIENSION TUIES ... vttt et ettt e e et et e e e et e e e et e e et e et e e et e eaneeeaneees 12
3.4 The SOIULION ADOVE AlIOWSuiiiiii ettt e e e e e e e e e e e et e e aaeeeaeees 12
TN g 0 .Y/ I 11 011 =Y i] 1N 12
I STV 7= o F=1 1o o RN 14

4 DatexIl LeVel C EXIENSION TUIESiie ittt e e e e e e e e e et eeanaas 15
4.1 LEVEl C EXEENSION TUIESttt et e e et e e e e e et e e e e et e eaneeeans 15
N U | /| IR (T g =Y To] U {1 15
4.3 XSD EXIENSION TUIBS .. .eviiie i et e e et e e e et e et e et e et e e e e e ea e e e e e ebesaneeeans 18

5 Importing and eXporting EXEENSTONSuuuuuiiiiiiiiiiie s 19

SIS o= T T Lo =) =T 0 K= Lo 1SRRI 21

Introduction

1 Introduction

1.1 Objective

This deliverable documents the work on converting the DATEX Il UML PIM into an XML Schema.
The first chapter “UML To XSD Conversion Process” describes the used tools and the entire
conversion process. Necessary mapping rules for such a conversion are written in the second
chapter. The last chapter describes in detail the derived XML Schema.

1.2 Document structure

This document is structured as follows:

e Section 1 gives an overview on the objectives of this document, its structure and how it fits
into the whole set of DATEX Il reference documents.

e Section 2 describes the UML to XSD conversion process

1.3 DATEX Il reference documents

Reference in this document | DATEX Il document Document | Date
version
[Modelling methodology] DATEX Il Modelling methodology 2.2 31-05-2013
[Data model] DATEX Il Data model 2.2 31-05-2013
[Schema generationtool] DATEX Il schema generation tool 2.2 31-05-2013
[Exchange PSM] DATEX Il Exchange PSM 2.2 31-05-2013
[WSDL] DATEX Il Push/Pull 2.2 31-05-2013
[XML schema] DATEX Il schema2 2 2 2.2 31-05-2013
Supporting documentation
[User guide] DATEX Il User guide 2.2 31-05-2013
[Software developers guide] | DATEX Il dev guide 2.2 31-05-2013
[XML schematoolguide] DATEX Il Schema generation tool 2.2 31-05-2013
guide

[Extension guide] DATEX Il Extension guideline 2.2 31-05-2013
[Profile guide] DATEX Il Profile guideline 2.2 31-05-2013
[Exchange PIM] DATEX Il Exchange PIM 1.01 08-02-2005

DATEX Il Extension guideline

D 2 evolving
DATEX

2 DATEX Il extension guideline

2.1 General extension rules

. A server could be extended with supplier/national specific extensions.

. Extensions are recommended to be done in the UML model. If it's not possible, then a
manual process editing the generated schema is needed.

. A level A model can be extended and will then become a Level B model or Level C model.

3 Datexll Level B Extension rules

3.1 Level B extension rules

. A Level B extension is an extension that should preserve interoperability between Level A
and Level B.
. A Level B extended client- or sever interface will have the same namespace and version as

the Level A version.

. A Level B extended client should function with a non extended server as long as server
interface and client interface have the same version number.

. An Level B server interface should function with a non extended client interface as long as
the interfaces have the same version number.

3.2 UML extension rules
Extensions should be placed in the Extension package.

Project Yiew

E-B-cHabd P
= [[Z) DATEx2System
Dacurnentation
[®] Analysis
Crynarmic
=] Logical
=] DZLogicalModel
EE DZLogicalModel
] Exchange
I:l Exkension
] General
I:l Managemenk
] Payload
D2LogicallModel
Functional

o = R = R

e Each extension should have it's own package in the Extension package.
Below is an example of an extension called ExtendedPoint.

jekiWagverket\Datex\Datex ProjectiExiension rules\49_4 extension.EAP] - EA EE]E|

it View Projeck Diagram Element Tools Corfiguration Help

d BEe RS B €. Auk-[JEABRY ..

Diagram: "ExtendedPoint” created: 2006-10-25 19:38:55 madifie |Project Yiew ax
Al B-B-cEabhd P

= Logical ~

=] DZLogicalModel
Eg DZLogicalModel
[Z Exchange
=] I:l Extensian
o ?E Extension
=[] ExtendedPoint
EE ExtendedPoint
ExtendedPointCoorc
[C7 General
ExtendedPoirt Coordinates [Z] Managsment
[C] Payload
C2logicalModel
Funickional 3

£ >

@Resource Wiew EProject Wieww

FoirfCoordinafes PoiriCoordinafes

+ bearing: Float

e |t's only allowed to extend existing classes with attributes, compositions and
aggregates. This is done by adding a new class, to the extension package. The new
class is a specialization of an existing(Level A) class.

Below is an example where the class ExtendedPointCoordinates extends the
PointCoordinates class.

\Projeki\Wagverket\Datex\Datex ProjectA\Exiension rules\49 4 extension.EAP] - EA QE]E|
] Edit Wjew Project Diagram Element Tools Configuration Help
2EH 2B 0D& B @&. S -[JBEABEY .. s
istom Diagram: "ExtendedPaint” created: 2006-10-25 19:38:55 madific | Project view ax
Al B-B-roEaWd P
= Logical ~

=] DZLogicalMods]
EE DZLogicalfodel
[Exchange
= I:l Extension
s ?E Extension
= (] ExtendedPoint
EE ExtendedPoint
ExtendedPointCoar:
[C] =eneral
ExtendedPoint Coordinates [Z] Management
] Payload
DZLogicalModel
Functional 3

4 ¥

@Resuurce View EPruject Wieww

L T

PoinfCoondinafes PoirfCoordinates

+ bearing: Float

e All new classes added as extension should have the extension tagged value set to
levelb. Otherwise it will not be recognized as an extension.

Below is the tagged value extension with levelb value highlighted.

T . - . i —

Element Tools Add-Ins Settings Window Help

& < defautt- - @ ABE @ BBz nL ond hcEe s 2EL
created: 2006-10-25 19:38:55 modfied: 2006-10-25 21:05:41 100% 827x 1169 x
S| EmEE s B+
= g DATEX2System o
PointCoordinates::PointCoordinates - [G] Documentation

(3] Analysis

oo - [# Dynamic

= [} Logical

m

£] D2LogicalModel
. 3 D2LogicalModel
Iil Exchange
3. [Extension
i 2 Extension
Iil BdendedPoint
i Fg ExtendedPoint
ExtendedPointCoordinates

m

ExtendedPointCoordinates

bearing: Float

2

tod

eiin
r | % Resources

] Project Browse

X GE®

E ExdendedPointCoordinates {Class) o
fevet

El from PointCoordinates
changed no
kemelMaodel yes £
definition Coordinates set defining the geodetic postion ...
order 480
origin -null - B
onginalCode -null -
onginalName -null -
huma ronkant

extension

e To this new extension class it's allowed to
e Add new attributes, using existing or new data types and enumerations.
e Add new compositions and aggregates to new or existing classes.

Below is an example of a valid extension

am: “MyExtension” created: 20060519 07:43:07 madified: 2006-05-19 07:59.54 1003 803 x 1067 z || it 29

g-B-cEmadF
= [[) DATEX2System
Documentation
[®] Analysis
Crynamic
=] Logical
= (] DzlogicalModel
‘EE DzLogicalMadel
[_1 Exchange

TraficEienent =+ [0 Extension
WestherRel sted:Tamparature acoient Aosident &9 Extension
+ aifTemperature: TemperatureCelsius [1_1] P e —— =] MyExtension
+ dewFointTemperature: TemperaturaGelsius [0..1] g s ooty MyExtension
+ masimumTemperature: TemperatureCelsius [0..1] DS Shm"”lu e B Myclass
+ minimumTemperature: TemperatureCelsius [0..1] B A [t oo B MyExtendedaceident
® wExtendedacciden
] General
[Z1 Management
21 Payload

D2LogicalMods!
Functional

MyTlass MyExtendedAccident

4 alf; Beolear |+ myattribute: Boalean
+ myMestAtiribute: String

e Allrules and constrains specified in the Part 1 Methodology document should be
followed.

e It's not allowed to make specializations of an extended class. (This is just to make it
simple)

e It's not allowed to extend an extension class (a class with extension set to levelb)

e Itis not allowed to change anything in the Payload, Exchange, General, and
Management package.

e You cannot add associations from an existing class to an extended class. If you would
like to do that you have to extend the existing class.

3.3

XSD extension rules

The tool should name the schema DATEXIISchema_[X]_[Y].xsd. Where X is the version
of the UML model(modelBaseVersion tagged value) and Y is the version of the XSD
Schema generation tool.

The namespace for the Level A schema should be set to
http://datex.eu.org/datexll/schema/[X]/[Y]. Where X is the version of the UML
model(modelBaseVersion tagged value) and Y is the version of the XSD Schema
generation tool.

Extensions are generated in the same namespace and file as the other classes in
Datexll (D2LogicalModel). This to prevents circular references between schemas and
namespaces.

When generating the Schema all complexTypes get an extra element
[classname]Extension of the type ExtensionsType which is defined as follows

<xs:complexType name="_ExtensionsType">
<xs:sequence>
<xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

This means that every class can be extended with anything and, if extended, it's known
where the extension can be found.

When the tool finds an extension class, by looking for tag extension = levelb, it should
generate a type that looks like:

<xsd:complexType name="_MyClassExtensionsType">
<xsd:sequence>
<xsd:element name = “myClass” type ="Extension:MyClass” minOccurs="0">
<xs:any namespace="##other" processContents="lax" minOccurs="0
maxOccurs="unbounded"/>
</xsd:any>
</xsd:sequence>
</xsd:complexType>

_[ClassName]ExtensionsType will be used as type on [Classname]Extension element
instead of _ExtensionsType.

If a class has two extensions, both of them will be added in list in the
_[ClassName]ExtensionsType complexType. This means that a non extended client
knows that there are some extensions points but does not care what they are. We still
have a strict validation of the core part of the schema.

3.4 The solution above allows

a level A instance to validate against any level b extended model/schema as long as the
modelBaseVersion is the same.

an extended level B instance to validate against any Level A schema as long as the
modelBaseVersion is the same.

3.5 Known limitations

An extended level B instance cannot validate against another extended level B Schema.
This is because the extension is in the same namespace as the level A schema. It would

be preferable to have the extension in a separate namespace but it's not possible
because the generated core part has to know about it's extensions and the extension
has to know about the level A part (as long as we want to reuse/link classes from the
level A model).

But most web service frameworks don’t actually validate messages. So in most
frameworks sending an extended message to another extended interface will actually
work. The missing or extra element will just be ignored.

It’'s not possible to add new additional specializations e.g. of SituationRecord or
Publication.

To solve this limitation for SituationRecord and Publication two concrete hook classes
have been created; GenericPublicaiton and GenericSituationRecord. Use this to derive
new types of Publications and SituationRecords.

For other classes, you should create a Level C extension. It is possible to extend the
base class as described in the document, but that will be an extension of the base class
not a new specialization.

It's not possible to add new values to existing enumerations.

3.6 Validation

The following picture gives an overview of where successful validation is possible.

System A System B
V1A < > V1A
V1B V1B1

V1B Q_VZA

V[X] means Version of the interface where 1 and 2 is the version number.

A means a Level A model / schema / interface

B1, B2 means a Level B model / schema / interface. But they are different extensions.

The arrows show between which interfaces successful validation can be performed. If there
is no arrow between two interfaces then successful validation cannot be done.

4 Datexll Level C Extension rules

4.1 Level C extension rules

. A Level C extension is an extension that has no interoperability between Level A and Level
C.

. A Level C extended client- or sever interface will not have the same namespace as Level
A.

. A Level C extended client should function with a server that has implemented the same

level C extension.

. A Level C server interface should function with a server that has implemented the same
level C extension.

4.2 UML extension rules

. A level C extension can in principle change and modify anything of the D2Logical model
Level A part. But it's recommended that the rules below which are similar to level B
extensions are followed.

Extensions should be placed in the Extension package.

Project

BB - ad P

= [[Z) DATEx2System
Dacurnentation
[®] Analysis
+ Crynanmic
= Logical
=[] DZLogicalModel
EE DZLogicalModel
] Exchange
I:l Exkension
] General
I:l Managemenk
1 Payload
D2LogicalModel
+ Functional

T E-E-E-E

o Each extension should have it's own package in the Extension package.
Below is an example of an extension called VehicleDataPublication.

eki\Wdgverket\Datex\STRESS\Restider\PIM_49 3 Brussels_17/102006.EAP] - EA

Wiews Project Diagram Element Tools Configuration Help

=B R0& B @. S -OBAEY.. &%
Niagram: "VehicleData" created: 2006-06-05 20:02:15 modified; 5) (Project View 3 Xleg)
A B-B-cHaABA D »
= [[Z) DATE2System ~llE
Dacumentation @
Publication::Publication El .D.nalysis
+ publicationTime: DateTime Dniannic E
+ publication$tatus: Fuhlicmionﬁtatus% = Lngical =
= £ D2LogicalModel T
'-?:E DZLogicalModel
] Exchangs
= [_] Extension
EE Exkensian
wahicleDataPublication [:l ExtendedPaint
=] vehicleData
'-?:E WehicleData
AssistanceCarData
q FloatingCarCrata
YehicleDataPublicati
. WehiclePosition
2 ‘WinterMaintenancer
adertifiable: ehicl #enumer ations vehi
Dl - — sidentifiables Vehicle
+ wehizle Reference: String [0..1] i D General
+ measuredOateTime: OateTime
+ wehicleState: wehicle $tateEnum [0..1] —— D Management
7 Payload
DZLogicalModel
/j t\ \ w i+ [l Functinnal %
» £ >
tendedPaint D2LaogicalMadel *yehicleData [: @RESDUFEE Wigt EPVD]'EEL' Wiet
o x
Task Type Status Onwner Description :
vodel Tasks,{. Model |zsues ;{ Model Glossary .-’} |'(>

e It's only recommended to extend existing classes with attributes, compositions and
aggregates. This is done by adding a new class, to the extension package. The new
class is a specialization of an existing(Level A) class.

Publication. Publication

+ publicationTime: DateTime
+ publicationftatus: Publication Status Epum,

WehicleDataPublication

e All new classes added as extensions should have the extension tagged value set to
levelc. Otherwise it will not be recognized as an extension.

e To this new extension class it’s allowed to
e Add new attributes, using existing or new data types and enumerations.
e Add new compositions and aggregates to new or existing classes.

Below is an example of a valid level ¢ extension. As you see this extension creates a
completely new publication by deriving from Publication. Then a mix of new classes and
predefined classes from Level A are added.

cd VehicleData /I
Publication::Publication
+ publicationTime: DateTime
+ publicationStatus: PublicationStatusgig
SituationRecord::Sourcelnformation
VehicleDataPublication — —
+ probabilityOfOccurrence: ProbabilityOfOccurrenceEnum [0..1]
<> + sourceCountry: CountryEnum [0..1]
0.11 4 sourceldentification: String [0..1]
+ sourceName: MultilingualString [0..1]
+ sourceType: SourceTypeEnum [0..1]
1
1.*
K . PointCoordinates::
«|der_1t|f|ab|e» VehiclePosition PointCoordinates
VehicleData
<>— kK>—
+ vehicleReference: String [0..1] 1 1
+ measuredDateTime: DateTime oo
+ vehicleState: vehicleStateEnum [0..1]
0.1
TrafficMeasurement::VehicleSpeed
+ individualVehicleSpeed: KilometresPerHour
FloatingCarData AssistanceCarData WinterMaintenanceCarData
+ vehicleType: VehicleTypeEnum [0..1] || + assistanceMeasure: + WinterMaintenanceMeasure:
+ vehicleType: VehicleTypeEnum || + measureStartTime: DateTime
+ measureStopTime: DateTime

e All rules specified in the UML modelling constrains document should be followed.

e It's not allowed to extend an extension class (a class with extension set to levelb or
levelc)

e It's not recommended to change anything in the Payload, Exchange, General, and
Management package.

e It's not recommended to add associations from an existing class to an extended class.
If you would like to do that you have to extend the existing class.

4.3 XSD extension rules

The tool will not generate a name for the schema. The schema name has to be manually
edited in the Schema name field.

Configuration

[Generate with definiions [docurmentaion)

Mamezpace: |

Schema name: |

The tool will not generate a namespace name. The namespace name has to be
manually edited in the Namespace field.

Extension classes will be generated in the same namespace as all other classes. This is
to prevent circular references.

When generating the Schema all complexTypes get an extra element
_[classname]Extension of the type ExtensionsType which is defined as follows

<xs:complexType name="_ExtensionsType">
<xs:sequence>
<xs:any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

This means that every class can be extended with anything and, if extended, it's known
where the extension can be found.

When the tool finds an extension class, by looking for tag extension = levelc no special
handling is done. Instead the class will be generated according to the rules. Thatis a
specialization will be derived as a type derived by extension.

5 Importing and exporting extensions

Importing and exporting extensions are preferable done with XMI. In EA you highlight the package
in the project Tree and choose import / export and the either “import package from XMI file” or

“export package from XMl file”.

Import dialog looks like this
Import Package from XMI ﬁj
E:;:age ExtendedPoint
Filename | E]
Options
Impart Diagrams
[7] strip GUID's Write Log file
|:| Impart using single transactiqn I
{Mot recommended for large imports) i
Treat Imparted Datatypes [-]

| Import EMX /UML2 Fies |

[View XML] [Import J[Close] [Help]

¥MI Import Progress

Select the file and press Import.

The export dialog looks like this

— - B
Export Package to XMI ‘ I -y - M

Foot :
Package ExtendedPoint
Filename: C:\Source’DATEX TG \TestLeveBBdension'pim_sxdensionB xml D
Stylesheet [v] {Optional stylesheet to post process XM content)
General Options For Export to Cther Tools N
Export Diagrams Enable full EA Roundtrip
[] Export Atemate Images
I e —— XMI Type: [XMI 1.1 - |
Wiite Log file Urisys/Flose Fomat i
[Use DTD i Exclude EA Tagged Values
[Generate Diagram Images)])
Warning: These optiohz are for expaorting
Format: - Ed model elements ta ather toolz only.
VewXMi | | Bpot || Cose | | Hep |
Progress

Choose file name and make sure the selections and versions of XMl is as above.Press Export.

6 Sharing extensions

Extensions in XMI format can easily be shared, because it’s just a file. If you have an extension
that is used by more then one, please share this extension on www.datex2.eu. There is a
extensions directory where you can upload your extension (XMl, UML model, XSD and
documentation). Known extensions can be candidates for incusion in future versions of DATEX.

http://www.datex2.eu/

