
DATEX II v2.1

D2

Document version: 2.1

31 May 2012

European Commission

Directorate General for Transport and Energy

Copyright © 2012

1.1 Document Control:

Prepared by :

 Date Comment Version

DATEX Technical
Group

01/12 2011 1.0

DATEX Technical
Group

14/05 2012 2.1

Reviewed by :

 Date Comment Version

DATEX Technical
Group

14/05 2012 2.1

Approved by :

 Date Comment Version

DATEX Technical
Group

31/05 2012 2.1

TABLE OF CONTENTS

1 Introduction .. 5
1.1 Objective ... 5
1.2 Document structure ... 5
1.3 DATEX II reference documents ... 5

2 DATEX II extension guideline ... 8
2.1 General extension rules .. 8

3 DatexII Level B Extension rules .. 9
3.1 Level B extension rules ... 9
3.2 UML extension rules ... 9
3.3 XSD extension rules .. 12
3.4 The solution above allows ... 12
3.5 Known limitations .. 12
3.6 Validation .. 14

4 DatexII Level C Extension rules .. 15
4.1 Level C extension rules ... 15
4.2 UML extension rules ... 15
4.3 XSD extension rules .. 18

5 Importing and exporting extensions .. 19

6 Sharing extensions .. 21

 Introduction

1.1 Objective

This deliverable documents the work on converting the DATEX II UML PIM into an XML Schema.
The first chapter “UML To XSD Conversion Process” describes the used tools and the entire
conversion process. Necessary mapping rules for such a conversion are written in the second
chapter. The last chapter describes in detail the derived XML Schema.

1.2 Document structure

This document is structured as follows:

• Section 1 gives an overview on the objectives of this document, its structure and how it fits
into the whole set of DATEX II reference documents.

• Section 2 describes the UML to XSD conversion process

1.3 DATEX II reference documents

Reference in this document DATEX II document Document
version

Date

[Modelling methodology] DATEX II v2.1 Modelling methodology 2.1 31-05-2012
[Data model] DATEX II v2.1 Data model 2.1 31-05-2012
[Schema generationtool] DATEX II 2.1 Tools to generate

schema
2.1 31-05-2012

[Exchange PSM] DATEX II v2.0 Exchange Platform
Specific Model

2.0 30-06-2011

[WSDL] DATEX II v2.0 Push/Pull 2.0 21-01-2011
[XML schema] DATEX II v2.1 XML schema 2.1 31-05-2012

 Supporting documentation
[User guide] DATEX II v2.1 User guide 1.0 31-05-2012
[Software developers guide] DATEX II v2.1 Software developers

guide
1.0 31-05-2012

[XML schematoolguide] DATEX II v2.1 Schema tool guide 2.1 31-05-2012
[Extension guide] DATEX II v2.1 Extension guide 2.1 31-05-2012
[Profile guide] DATEX II v2.1 Profile guide 2.1 31-05-2012
[Exchange PIM] DATEX II v1.0

Exchange Platform
Independent Model

1.01 08-02-2005

1 Introduction

DATEX II Extension guideline

2.1 General extension rules

• A server could be extended with supplier/national specific extensions.

• Extensions are recommended to be done in the UML model. If it’s not possible, then a

manual process editing the generated schema is needed.

• A level A model can be extended and will then become a Level B model or Level C model.

2 DATEX II extension guideline

3 DatexII Level B Extension rules

3.1 Level B extension rules

• A Level B extension is an extension that should preserve interoperability between Level A
and Level B.

• A Level B extended client- or sever interface will have the same namespace and version as

the Level A version.

• A Level B extended client should function with a non extended server as long as server
interface and client interface have the same version number.

• An Level B server interface should function with a non extended client interface as long as
the interfaces have the same version number.

3.2 UML extension rules

• Extensions should be placed in the Extension package.

• Each extension should have it’s own package in the Extension package.
Below is an example of an extension called ExtendedPoint.

• It’s only allowed to extend existing classes with attributes, compositions and
aggregates. This is done by adding a new class, to the extension package. The new
class is a specialization of an existing(Level A) class.
Below is an example where the class ExtendedPointCoordinates extends the
PointCoordinates class.

• All new classes added as extension should have the extension tagged value set to
levelb. Otherwise it will not be recognized as an extension.

Below is the tagged value extension with levelb value highlighted.

• To this new extension class it’s allowed to

• Add new attributes, using existing or new data types and enumerations.
• Add new compositions and aggregates to new or existing classes.

Below is an example of a valid extension

• All rules and constrains specified in the Part 1 Methodology document should be
followed.

• It’s not allowed to make specializations of an extended class. (This is just to make it
simple)

• It’s not allowed to extend an extension class (a class with extension set to levelb)

• It is not allowed to change anything in the Payload, Exchange, General, and
Management package.

• You cannot add associations from an existing class to an extended class. If you would
like to do that you have to extend the existing class.

3.3 XSD extension rules

• The tool should name the schema DATEXIISchema_[X]_[Y].xsd. Where X is the version
of the UML model(modelBaseVersion tagged value) and Y is the version of the XSD
Schema generation tool.

• The namespace for the Level A schema should be set to
http://datex.eu.org/datexII/schema/[X]/[Y]. Where X is the version of the UML
model(modelBaseVersion tagged value) and Y is the version of the XSD Schema
generation tool.

• Extensions are generated in the same namespace and file as the other classes in
DatexII (D2LogicalModel). This to prevents circular references between schemas and
namespaces.

• When generating the Schema all complexTypes get an extra element

[classname]Extension of the type ExtensionsType which is defined as follows

<xs:complexType name="_ExtensionsType">
 <xs:sequence>

<xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>
</xs:complexType>

This means that every class can be extended with anything and, if extended, it’s known
where the extension can be found.

• When the tool finds an extension class, by looking for tag extension = levelb, it should
generate a type that looks like:

<xsd:complexType name="_MyClassExtensionsType">

<xsd:sequence>
 <xsd:element name = “myClass” type =”Extension:MyClass” minOccurs=”0”>

<xs:any namespace="##other" processContents="lax" minOccurs="0
maxOccurs="unbounded"/>
</xsd:any>

 </xsd:sequence>
</xsd:complexType>

_[ClassName]ExtensionsType will be used as type on [Classname]Extension element
instead of _ExtensionsType.

• If a class has two extensions, both of them will be added in list in the

_[ClassName]ExtensionsType complexType. This means that a non extended client
knows that there are some extensions points but does not care what they are. We still
have a strict validation of the core part of the schema.

3.4 The solution above allows

• a level A instance to validate against any level b extended model/schema as long as the

modelBaseVersion is the same.

• an extended level B instance to validate against any Level A schema as long as the
modelBaseVersion is the same.

3.5 Known limitations

• An extended level B instance cannot validate against another extended level B Schema.
This is because the extension is in the same namespace as the level A schema. It would

be preferable to have the extension in a separate namespace but it’s not possible
because the generated core part has to know about it’s extensions and the extension
has to know about the level A part (as long as we want to reuse/link classes from the
level A model).
But most web service frameworks don’t actually validate messages. So in most
frameworks sending an extended message to another extended interface will actually
work. The missing or extra element will just be ignored.

• It’s not possible to add new additional specializations e.g. of SituationRecord or

Publication.
To solve this limitation for SituationRecord and Publication two concrete hook classes
have been created; GenericPublicaiton and GenericSituationRecord. Use this to derive
new types of Publications and SituationRecords.
For other classes, you should create a Level C extension. It is possible to extend the
base class as described in the document, but that will be an extension of the base class
not a new specialization.

• It’s not possible to add new values to existing enumerations.

3.6 Validation

 The following picture gives an overview of where successful validation is possible.

 V[X] means Version of the interface where 1 and 2 is the version number.
 A means a Level A model / schema / interface
 B1, B2 means a Level B model / schema / interface. But they are different extensions.

The arrows show between which interfaces successful validation can be performed. If there
is no arrow between two interfaces then successful validation cannot be done.

4 DatexII Level C Extension rules

4.1 Level C extension rules

• A Level C extension is an extension that has no interoperability between Level A and Level
C.

• A Level C extended client- or sever interface will not have the same namespace as Level

A.

• A Level C extended client should function with a server that has implemented the same
level C extension.

• A Level C server interface should function with a server that has implemented the same
level C extension.

4.2 UML extension rules

• A level C extension can in principle change and modify anything of the D2Logical model
Level A part. But it’s recommended that the rules below which are similar to level B
extensions are followed.

• Extensions should be placed in the Extension package.

• Each extension should have it’s own package in the Extension package.
Below is an example of an extension called VehicleDataPublication.

• It’s only recommended to extend existing classes with attributes, compositions and
aggregates. This is done by adding a new class, to the extension package. The new
class is a specialization of an existing(Level A) class.

• All new classes added as extensions should have the extension tagged value set to
levelc. Otherwise it will not be recognized as an extension.

• To this new extension class it’s allowed to
• Add new attributes, using existing or new data types and enumerations.
• Add new compositions and aggregates to new or existing classes.

Below is an example of a valid level c extension. As you see this extension creates a
completely new publication by deriving from Publication. Then a mix of new classes and
predefined classes from Level A are added.

cd VehicleData

Publication::Publication

+ publicationTime: DateTime
+ publicationStatus: PublicationStatusEnum

VehicleDataPublication

PointCoordinates::
PointCoordinates

«identifiable»
VehicleData

+ vehicleReference: String [0..1]
+ measuredDateTime: DateTime
+ vehicleState: vehicleStateEnum [0..1]

VehiclePosition

TrafficMeasurement::VehicleSpeed

+ individualVehicleSpeed: KilometresPerHour

FloatingCarData

+ vehicleType: VehicleTypeEnum [0..1]

AssistanceCarData

+ assistanceMeasure:
+ vehicleType: VehicleTypeEnum

WinterMaintenanceCarData

+ WinterMaintenanceMeasure:
+ measureStartTime: DateTime
+ measureStopTime: DateTime

SituationRecord::SourceInformation

+ probabilityOfOccurrence: ProbabilityOfOccurrenceEnum [0..1]
+ sourceCountry: CountryEnum [0..1]
+ sourceIdentification: String [0..1]
+ sourceName: Multi l ingualString [0..1]
+ sourceType: SourceTypeEnum [0..1]

1..*

1

0..1

1 1

0..1

• All rules specified in the UML modelling constrains document should be followed.

• It’s not allowed to extend an extension class (a class with extension set to levelb or
levelc)

• It’s not recommended to change anything in the Payload, Exchange, General, and

Management package.

• It’s not recommended to add associations from an existing class to an extended class.
If you would like to do that you have to extend the existing class.

4.3 XSD extension rules

• The tool will not generate a name for the schema. The schema name has to be manually
edited in the Schema name field.

• The tool will not generate a namespace name. The namespace name has to be
manually edited in the Namespace field.

• Extension classes will be generated in the same namespace as all other classes. This is

to prevent circular references.

• When generating the Schema all complexTypes get an extra element

_[classname]Extension of the type ExtensionsType which is defined as follows

<xs:complexType name="_ExtensionsType">
 <xs:sequence>

<xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>
</xs:complexType>

This means that every class can be extended with anything and, if extended, it’s known
where the extension can be found.

• When the tool finds an extension class, by looking for tag extension = levelc no special
handling is done. Instead the class will be generated according to the rules. That is a
specialization will be derived as a type derived by extension.

5 Importing and exporting extensions

Importing and exporting extensions are preferable done with XMI. In EA you highlight the package
in the project Tree and choose import / export and the either “import package from XMI file” or
“export package from XMI file”.

Import dialog looks like this

Select the file and press Import.

The export dialog looks like this

Choose file name and make sure the selections and versions of XMI is as above.Press Export.

Extensions in XMI format can easily be shared, because it’s just a file. If you have an extension
that is used by more then one, please share this extension on www.datex2.eu. There is a
extensions directory where you can upload your extension (XMI, UML model, XSD and
documentation). Known extensions can be candidates for incusion in future versions of DATEX.

6 Sharing extensions

