DATEX Ilv2.1
D2

Document version: 2.1

31 May 2012

European Commission
Directorate General for Transport and Energy

Copyright © 2012



1.1 Document Control:

Prepared by :

Date Comment Version
DATEX Technical 01/12 2011 1.0
Group
DATEX Technical 14/05 2012 2.1
Group
Reviewed by :
Date Comment Version
DATEX Technical 14/05 2012 2.1
Group
Approved by :
Date Comment Version
DATEX Technical 31/05 2012 2.1

Group




TABLE OF CONTENTS

1 Introduction

1.1 Objective
O B To To U] 01T o S 1 (U od (U] (= PSP 5
1.3 DATEX Il reference QOCUMENES.....cccoiiiiiiiiiieiee ettt n e e a e e e e e e e n e e e e e e e e eaas 5
2 DATEX I eXtension QUIAEIINE ...ttt ettt e e e e et e e e e e e e e nnabeeeaaeeeeans 8
2.1  General extension rules
3 Datexll Level B EXTENSION TUIES ......ccooiiiiiieeeeeeeeeeeeeeeee ettt
3.1 Level B extension rules..............
3.2 UML extension rules ..................
3.3 XSD extension rules...................
3.4 The solution above allows
3.5 Known limitations
3.6 Validation

4 Datexll Level C Extension rules

4.1 Level C extension rules
4.2 UML extension rules ..................
4,3 XSD EXIENSION FUIES. .. uuvtuirirrersrerrrererrrersrsrsrersrereressrsressrsrersrsrsressrssersrsrsssssrsrssssssssssssrrsrsrrrrrrsrsrrrrree
5 Importing and exporting XTENSIONS ....coiiiiieiiiii et e et e e e e e e et e e e e e e e s anebeeeaaaeeaan 19

6 Sharing extensions



Introduction




1 Introduction

1.1  Objective

This deliverable documents the work on converting the DATEX Il UML PIM into an XML Schema.
The first chapter “UML To XSD Conversion Process” describes the used tools and the entire
conversion process. Necessary mapping rules for such a conversion are written in the second
chapter. The last chapter describes in detail the derived XML Schema.

1.2 Document structure

This document is structured as follows:

e Section 1 gives an overview on the objectives of this document, its structure and how it fits
into the whole set of DATEX Il reference documents.

*  Section 2 describes the UML to XSD conversion process

1.3 DATEX Il reference documents

Reference in this document | DATEX Il document Document | Date
version
[Modelling methodology] DATEX Il v2.1 Modelling methodology | 2.1 31-05-2012
[Data model] DATEX Il v2.1 Data model 2.1 31-05-2012
[Schema generationtool] DATEX Il 2.1 Tools to generate 2.1 31-05-2012
schema
[Exchange PSM] DATEX Il v2.0 Exchange Platform 2.0 30-06-2011
Specific Model
[WSDL] DATEX Il v2.0 Push/Pull 2.0 21-01-2011
[XML schema] DATEX Il v2.1 XML schema 2.1 31-05-2012
Supporting documentation
[User guide] DATEX Il v2.1 User guide 1.0 31-05-2012
[Software developers guide] | DATEX Il v2.1 Software developers 1.0 31-05-2012
guide
[XML schematoolguide] DATEX Il v2.1 Schema tool guide 2.1 31-05-2012
[Extension guide] DATEX Il v2.1 Extension guide 2.1 31-05-2012
[Profile guide] DATEX Il v2.1 Profile guide 2.1 31-05-2012
[Exchange PIM] DATEX 11 v1.0 1.01 08-02-2005
Exchange Platform
Independent Model







DATEX Il Extension guideline

D 2 evolving
DATEX




2 DATEX Il extension guideline

2.1 General extension rules

. A server could be extended with supplier/national specific extensions.

. Extensions are recommended to be done in the UML model. If it's not possible, then a
manual process editing the generated schema is needed.

. A level A model can be extended and will then become a Level B model or Level C model.



3 Datexll Level B Extension rules

3.1 Level B extension rules

. A Level B extension is an extension that should preserve interoperability between Level A
and Level B.
. A Level B extended client- or sever interface will have the same namespace and version as

the Level A version.

. A Level B extended client should function with a non extended server as long as server
interface and client interface have the same version number.

. An Level B server interface should function with a non extended client interface as long as
the interfaces have the same version number.

3.2 UML extension rules
. Extensions should be placed in the Extension package.

Projeck

S-B-0abd
= ([ DATER2System
Docurment ation
[@] Analysis
Drynaric
= Logical
= [ DzLogicalModel
EE DzLogicalModel
1 Exchange
[:l Extension
] ceneral
[:l Management
1 Pavload
C2LogicalrMadel
Functional

]

« Each extension should have it's own package in the Extension package.
Below is an example of an extension called ExtendedPoint.



jekt\Wagverket\Datex\Datex Project\Extension rulesy49_4 extension.EAP] - EA QE]E|

lit  “iew  Project Diagram  Element  Tools  Configuration Help

d BREw RDE B £. Auk-[1BEABRY ..

Diagram: "ExtendedPaint” created: 2006-10-25 13:38:55 madifi | Fraject Yiew ax
Al B-B-ocEHaBd P

= Logical ~

= ] DZLogicalModel
EE DZLogicaltodel
] Exchange
=2 I:l Extensian
L Eg Extension
= [_] ExtendedPoint
EE ExtendedPaint
ExtendedPointCoor:

PoimiCoordinafes: PoirfCoordinafes

£ General
ExtendedFoirt Coordinates [C1 Management
+ bearing: Float Payload
DZLogicalModel
Furictional 3
< »

@Resuurce Ve I_]EEI5II:'r|:|]'n3|:I: Wiew

« It's only allowed to extend existing classes with attributes, compositions and
aggregates. This is done by adding a new class, to the extension package. The new
class is a specialization of an existing(Level A) class.

Below is an example where the class ExtendedPointCoordinates extends the
PointCoordinates class.

\Projekt\Wagverket\Datex\Datex ProjectiExiension rules\49._ 4 extension.EAP] - EA

]Edit Wigw  Project  Diagram  Element  Tools Configuration  Help

ZH 2B« 008 B @.: Ak -[JEABRSY 7,  BLEF ST
sstom Diagram: "ExterdedPoint” created: 2006-10-25 19:38:55 madifie Project Visw I
A B-BH-oE a4 F

= [E] Logical A
i =[] b2LogicalMaodel

- TE D2LogicalMadel
PoirfCoondinafes PoirfCoordinafes 4 e
- |_] Exchange
= [ Extension
e { { 2 ?E Extension

= ] ExtendedPaint
a ?E ExtendedPoint
[ ExtendedPointCoor:

- [ General
ExtendedPoint Coordinates - ; = ::l Management
: o= O
+ bearing: Float & |_1 Payload
: - B p2logicalModel
&3 Functional e
< | >

@Resuurce Wiew EF‘ruject View

A T R

« All new classes added as extension should have the extension tagged value set to
levelb. Otherwise it will not be recognized as an extension.

Below is the tagged value extension with levelb value highlighted.



Element Tools Add-ns Settings Window Help

& 5B | <o * @5 BABE @ ciRdmsinh ani HEEL 0 RE 2
| created: 2006-10-25 19:33:55 modfied: 2006-10-2521:05:41 100% 827x 1163  x
- EEtE s E-E 8
| || @ I DATEX2System -
PaintCoordinates:-PointCoordinates - [E] Documentation
@ [3] Analysis
oo [ Dynamic

Logical

i

23 D2LogicalModel

Exchange

|_] Extension

. B3 Extension

[_] ExtendedPoint

T ExtendedPoint
ExtendedPointCoordinates

1

D2LogicalModel ‘ ‘

ExtendedPointCoordinates

bearing: Flost

e

ension levelb] i
= from PointCoordinates ‘
changed ne
kemelModel yes e
definition Coordinates set defining the geodstic position ...
onder 460
origin -null -
originalCode -l - N
originalMame -l -
== hme orolest,
extension

¢ To this new extension class it's allowed to
« Add new attributes, using existing or new data types and enumerations.
« Add new compositions and aggregates to new or existing classes.

Below is an example of a valid extension

am: "MyEstension”  created: 2006-05-19 07:43:07 modified: 2006-05-19 07.59.54 100% 803 %1067 v || e e S Y

A B-@-cEahdg i
= ([ DATERZSystem
Documentation
[®] Analysis
Dynaic
=] Logical
=[] D2lagicalMadel
‘tg D2LogicalModel
] Exchange

TaffcElenent = (2] Extension
Weather el ated: Temperature pcident: osidant 3 Extension
+ airTemperature: TemperatureCelsius [0..1] . = [ MyExtension
+  dewPointTempersture: TemperatureCelsius [..1] : :gg::::ga”Z?'Aﬁ:f;:en:.:ca:?nir:rl%[ej1] MyExtension
+ maximumTemperature: TemperstureCelsius [0..1] T smnyp[o T MyClass
+ minimumTemperature: TemperatureCelsius [0..1] . Ol s MyExttendedcrident
#- B MyExtendedncciden
21 General
] Management
1 Payload

D2LogicalModel
Functional

MyClass MyExtendedAscidert

4 atfc Booleaf |+ myathibute: Boslean
+  myMedSttribute: Sting

¢ Allrules and constrains specified in the Part 1 Methodology document should be
followed.

* It's not allowed to make specializations of an extended class. (This is just to make it
simple)

« It's not allowed to extend an extension class (a class with extension set to levelb)

« Itis not allowed to change anything in the Payload, Exchange, General, and
Management package.

* You cannot add associations from an existing class to an extended class. If you would
like to do that you have to extend the existing class.



3.3

XSD extension rules

The tool should name the schema DATEXIISchema_[X]_[Y].xsd. Where X is the version
of the UML model(modelBaseVersion tagged value) and Y is the version of the XSD
Schema generation tool.

The namespace for the Level A schema should be set to
http://datex.eu.org/datexll/schema/[X]/[Y]. Where X is the version of the UML
model(modelBaseVersion tagged value) and Y is the version of the XSD Schema
generation tool.

Extensions are generated in the same namespace and file as the other classes in
Datexll (D2LogicalModel). This to prevents circular references between schemas and
namespaces.

When generating the Schema all complexTypes get an extra element
[classname]Extension of the type ExtensionsType which is defined as follows

<xs:complexType name="_ExtensionsType">
<xs:sequence>
<xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

This means that every class can be extended with anything and, if extended, it's known
where the extension can be found.

When the tool finds an extension class, by looking for tag extension = levelb, it should
generate a type that looks like:

<xsd:complexType name="_MyClassExtensionsType">
<xsd:sequence>
<xsd:element name = “myClass” type ="Extension:MyClass” minOccurs="0">
<xs:any namespace="##other" processContents="lax" minOccurs="0
maxOccurs="unbounded"/>
</xsd:any>
</xsd:sequence>
</xsd:complexType>

_[ClassName]ExtensionsType will be used as type on [Classname]Extension element
instead of _ExtensionsType.

If a class has two extensions, both of them will be added in list in the
_[ClassName]ExtensionsType complexType. This means that a non extended client
knows that there are some extensions points but does not care what they are. We still
have a strict validation of the core part of the schema.

3.4 The solution above allows

a level A instance to validate against any level b extended model/schema as long as the
modelBaseVersion is the same.

an extended level B instance to validate against any Level A schema as long as the
modelBaseVersion is the same.

3.5 Known limitations

An extended level B instance cannot validate against another extended level B Schema.
This is because the extension is in the same namespace as the level A schema. It would



be preferable to have the extension in a separate namespace but it's not possible
because the generated core part has to know about it's extensions and the extension
has to know about the level A part (as long as we want to reuse/link classes from the
level A model).

But most web service frameworks don't actually validate messages. So in most
frameworks sending an extended message to another extended interface will actually
work. The missing or extra element will just be ignored.

It's not possible to add new additional specializations e.g. of SituationRecord or
Publication.

To solve this limitation for SituationRecord and Publication two concrete hook classes
have been created; GenericPublicaiton and GenericSituationRecord. Use this to derive
new types of Publications and SituationRecords.

For other classes, you should create a Level C extension. It is possible to extend the
base class as described in the document, but that will be an extension of the base class
not a new specialization.

It's not possible to add new values to existing enumerations.



3.6 Validation

The following picture gives an overview of where successful validation is possible.

System A System B
V1A < > V1A
V1 B1 V1 B1

V1B Q_VZA

V[X] means Version of the interface where 1 and 2 is the version number.

A means a Level A model / schema / interface

B1, B2 means a Level B model / schema / interface. But they are different extensions.

The arrows show between which interfaces successful validation can be performed. If there
is no arrow between two interfaces then successful validation cannot be done.



4 Datexll Level C Extension rules

4.1 Level C extension rules

. A Level C extension is an extension that has no interoperability between Level A and Level
C.

. A Level C extended client- or sever interface will not have the same namespace as Level
A.

. A Level C extended client should function with a server that has implemented the same

level C extension.

. A Level C server interface should function with a server that has implemented the same
level C extension.

4.2 UML extension rules

. A level C extension can in principle change and modify anything of the D2Logical model
Level A part. But it's recommended that the rules below which are similar to level B
extensions are followed.

. Extensions should be placed in the Extension package.

Praojeck View

S-B-0abd
= ([ DATER2System
Docurment ation
[@] Analysis
Drynaric
= Logical
= [ DzLogicalModel
EE DzLogicalModel
1 Exchange
[:l Extension
] ceneral
[:l Management
1 Pavload
C2LogicalrMadel
Functional

]

« Each extension should have it's own package in the Extension package.
Below is an example of an extension called VehicleDataPublication.



ekt\Wdgverket\Datex\S TRESS\Restider\PIM_49 3 Brussels 17102006.EAP] - EA

b Miew Project  Diagram  Element  Toaols  Configuration  Help

= [ D2LogicalMadel
1 '-?_'E DzLogicalModel
@ ] Exchange
£ ] Extension
T ?E Extension
¥ ] ExtendedPoirt
(=~ ] ¥ehicleData
i '{E wehicleData
i i - E AssistancearData
1 i : #- B FloatingCarData
i : - B wehideDataPublicati
- B vehidePosition

128~ R0& B @.: Ak - [JBABEY 7. fEEFii BN >
Jiagram; "YehicleData” created; 2006-06-05 20:02:15 modified; s | [ Project Yiew &% X-'G@
A @ -E-cEamap v
2 [ DATEX2System a2
T = i [=] pocumentation &
Publication. Publicaticn # El Analysis
+  publicationTime: DateTime [+ Cryniamic E
+  publication$tatus:  Publication Status BRum, = Ladgical =
5

‘ehicleDataPublication

e i : =
i - B winkerMaintenance:
f:'dimi:iaﬂ?le» wiekiieh i i - E senumeration: wehi
2 i i i3 : i ]
b ——— : : F- B «identifiables Vehiclk
+ wehicleReference: String [0..1] 1 H [+ !:] General
+ meazuredDateTime; DateTime & Ca M .
+ wehiclaState: wehicleStataBnum [0..1] ':_' i Managemer
+

: - ] Payload L
i - B DzLogicalModel
L) i+ [ml Finctinnal b

tendedPaoint | DZlogicalModel - *¥ehicleData [ @Resaurce Wiem EIF‘rDject Wiew
n X
Task, Tvpe Skatus Cnier Descripkion =
Viodel Tasks,{ Model zsues ,.{ Model Glossary l/' |’( )

« It's only recommended to extend existing classes with attributes, compositions and
aggregates. This is done by adding a new class, to the extension package. The new
class is a specialization of an existing(Level A) class.

Putilication Publication

+ publicationTime: DateTime
+ publication $tatus: Publication Status Baym,

WehicleDataPublication




« All new classes added as extensions should have the extension tagged value set to
levelc. Otherwise it will not be recognized as an extension.

e To this new extension class it's allowed to
* Add new attributes, using existing or new data types and enumerations.
« Add new compositions and aggregates to new or existing classes.

Below is an example of a valid level c extension. As you see this extension creates a
completely new publication by deriving from Publication. Then a mix of new classes and
predefined classes from Level A are added.

cd VehicleData /

Publication::Publication

+ publicationTime: DateTime
+ publicationStatus: Publicationstatus@&gﬁ

SituationRecord::Sourcelnformation

VehicleDataPublication

+ probabilityOfOccurrence: ProbabilityOfOccurrenceEnum [0..1]
K> + sourceCountry: CountryEnum [0..1]
0.1+ surceldentification: String [0..1]
+ sourceName: MultilingualString [0..1]
+ sourceType: SourceTypeEnum [0..1]
1
1%
identifiabl PointCoordinates::
«i er_1 ifiable» VehiclePosition PointCoordinates
VehicleData
>
+ vehicleReference: String [0..1] 1 1
+ measuredDateTime: DateTime oo
+ vehicleState: vehicleStateEnum [0..1]
0.1

TrafficMeasurement::VehicleSpeed

+ individualVehicleSpeed: KilometresPerHour

FloatingCarData AssistanceCarData WinterMaintenanceCarData

+ vehicleType: VehicleTypeEnum [0..1] [| + assistanceMeasure: + WinterMaintenanceMeasure:
+ vehicleType: VehicleTypeEnum || + measureStartTime: DateTime
+ measureStopTime: DateTime

¢ Allrules specified in the UML modelling constrains document should be followed.

¢ It's not allowed to extend an extension class (a class with extension set to levelb or
levelc)

« It's not recommended to change anything in the Payload, Exchange, General, and
Management package.

« It's not recommended to add associations from an existing class to an extended class.
If you would like to do that you have to extend the existing class.



4.3 XSD extension rules

e The tool will not generate a name for the schema. The schema name has to be manually
edited in the Schema name field.

Configuration

[ Generate with definitions [docurnentaion)

M amezpace: |

Schema name: |

e The tool will not generate a namespace name. The namespace name has to be
manually edited in the Namespace field.

e Extension classes will be generated in the same namespace as all other classes. This is
to prevent circular references.

*  When generating the Schema all complexTypes get an extra element
_[classname]Extension of the type ExtensionsType which is defined as follows

<xs:complexType name="_ExtensionsType">

<xs:sequence>
<xs:any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

This means that every class can be extended with anything and, if extended, it's known
where the extension can be found.

«  When the tool finds an extension class, by looking for tag extension = levelc no special
handling is done. Instead the class will be generated according to the rules. That is a
specialization will be derived as a type derived by extension.



5 Importing and exporting extensions

Importing and exporting extensions are preferable done with XMI. In EA you highlight the package
in the project Tree and choose import / export and the either “import package from XMl file” or

“export package from XMl file”.

Import dialog looks like this

Import Package from XMI
E;;fage ExtendedPoint
Filename | B
Options
Ei Import Diagrams
[ strip GUID's [#] wirite Log file
[ Import using single transau:ﬁqn !
{Mot recommended for large imports) “

Treat Imported Datatypes [ - |
| Import EMX / UML2 Fies | E
| vewxmr | | tmport || dose || hep |

¥MI Import Progress

Select the file and press Import.

The export dialog looks like this




.hE:_-:cpt_:brl: Package to XMI i i -; ---- |

Root
fes ExtendedPaint
Filename: C:\Sounce \DATEX TG\ TestLeve BBEdensionpim_extensionB xml E]
Styleshest I v] {Optional stylesheet to post process XM| content)
General Options For Eqport to Other Tools R
|/| Bxport Diagrams Enable full EA Roundtrip
[ 7| Bxport Atemate Images
(] Format XMI Output XMIType: XM 1.1 = |
EWJ‘HE Log file | UnisysiFose Fomat i
" U=e DTD =
e | | Exclude EA Tagged Val
[ 7| Generate Diagram Images FERE F A
. - wharming, T ese ophions are for exporting
Format: i - | B madel elements o.ather tools anly
[ Mewxmi | [ Beot | [ Qose | [ Hep |
Progress

Choose file name and make sure the selections and versions of XMl is as above.Press Export.




6 Sharing extensions

Extensions in XMI format can easily be shared, because it's just a file. If you have an extension
that is used by more then one, please share this extension on www.datex2.eu. There is a
extensions directory where you can upload your extension (XMI, UML model, XSD and
documentation). Known extensions can be candidates for incusion in future versions of DATEX.



